Simultaneous Saccharification and Fermentation (SSF) of sugarcane bagasse by cellulase and Pachysolen tannophilus MTCC *1077 were investigated in the present study. Important process variables for ethanol production form pretreated bagasse were optimized using Response Surface Methodology (RSM) based on central composite design (CCD) experiments. A 23 five level CCD experiments with central and axial points was used to develop a statistical model for the optimization of process variables such as incubation temperature (25–45°) X1, pH (5.0–7.0) X2 and fermentation time (24–120 h) X3. Data obtained from RSM on ethanol production were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation and contour plots were used to study the interactions among three relevant variables of the fermentation process. The fermentation experiments were carried out using an online monitored modular fermenter 2L capacity. The processing parameters setup for reaching a maximum response for ethanol production was obtained when applying the optimum values for temperature (32°C), pH (5.6) and fermentation time (110 h). Maximum ethanol concentration (3.36 g\/l) was obtained from 50 g\/l pretreated sugarcane bagasse at the optimized process conditions in aerobic batch fermentation. Kinetic models such as Monod, Modified Logistic model, Modified Logistic incorporated Leudeking – Piret model and Modified Logistic incorporated Modified Leudeking – Piret model have been evaluated and the constants were predicted.<\/p>\r\n","references":"[1] G J. Zaldivar, J. Nielsen, and L.Olsson, \"Fuel ethanol production\r\nfrom lignocellulose: A challenge for metabolic engineering and\r\nprocess integration\", Appl. Microbiol. Biotechnol., vol. 56, pp. 17 -\r\n34, 2001.\r\n[2] M. Karuppaiya, E. Sasikumar, T. Viruthagiri, and V.Vijayagopal,\r\n\"Optimization of process parameters using Response Surface\r\nMethodology (RSM) for ethanol production from waste cashew apple\r\njuice using Zymomonas mobilis\", Chem. Eng. Comm. vol.196, pp. 1-\r\n11, 2009.\r\n[3] J.D.Wright, \"Ethanol from biomass by enzymatic hydrolysis\", Chem.\r\nEng. Prog., vol. 84, no.8, pp.62 -74, 1988.\r\n[4] L.Olsson, and B.Hahn-Hagerdal, \"Fermentation of lignocellulosic\r\nhydrolysates for ethanol production\", Enzym. Microb. Technol.,\r\nvol.18, pp.312 - 33, 1996.\r\n[5] A. Pandey, C.R. Soccol, P. Nigam, and V.T. Soccol,\r\n\"Biotechnological potential of agro-industrial residues I: sugarcane\r\nbagasse\", Biores. Technol., vol.74, pp. 69 - 81, 2000.\r\n[6] F. Haagensen, and B.K.Ahring, \"Enzymatic hydrolysis and glucose\r\nfermentation of wet oxidized sugarcane bagasse and rice straw for\r\nbioethanol production\", Riso-R-1517 (EN), vol. 1, pp.184 -195, 2002.\r\n[7] L.Dawson, and R. Boopathy, \"Use of post-harvest sugarcane residue\r\nfor ethanol production\", Biores. Technol., vol. 98, pp.1695 - 1699,\r\n2007.\r\n[8] Ye Sun, and J. Cheng, \"Hydrolysis of lignocellulosic materials for\r\nethanol production: A review\", Biores. Technol., vol. 83, pp.1 - 11,\r\n2002.\r\n[9] M.G. Adsul, J.E.Ghule, H.Shaikh, R.Singh, K.B.Bastawde,\r\nD.V.Gokhale, and A.J. Varma, \"Enzymatic hydrolysis of delignified\r\nbagasse polysaccharides\", Carbohy. Polym., vol.62, pp. 6 - 10, 2005.\r\n[10] P. Ghosh, N.B.Pamment, and W.R.B.Martin, \"Simultaneous\r\nsaccharification and fermentation of cellulose: effect of \u03b2-Dglucosidase\r\nactivity and ethanol inhibition of cellulases\", Enzym.\r\nMicrob. Technol., vol. 4, pp. 425 - 430, 1982.\r\n[11] C.E.Wyman, \"Ethanol from lignocellulosic biomass: Technology,\r\neconomics, and opportunities\", Biores. Technol., vol. 50, pp.3 - 16,\r\n1994.\r\n[12] R. Balusu, R.R.Paduru, S.K.Kuravi, G.Seenaya, and G.Reddy,\r\n\"Optimization of critical medium components using response surface\r\nmethodology for ethanol production from cellulosic biomass by\r\nClostridium thermocellum SS19\", Proc. Biochem., vol. 40, pp. 3025 -\r\n3030, 2005.\r\n[13] O.Jargalsaikhan, and N. Saracoglu, \"Application of experimental\r\ndesign method for ethanol production by fermentation of sunflower\r\nseed hull hydrolysate using Pichia stipitis NRRL-124\", Chem. Eng.\r\nComm., vol.196, pp.93 - 103, 2009.\r\n[14] D. M. Updegroff, \"Estimation of cellulose by anthrone reagent\",\r\nAnal. Chem., vol.32, pp. 420 - 423, 1969.\r\n[15] M. Mandel, R. Andreotti, and C. Roche, \"Measurement of\r\nsaccharifying cellulose\", Biotechnol. Bioeng. Symp., vol. 6, pp.21 -\r\n33, 1976.\r\n[16] J. Szczodrak, and J. Fiedurek, \"Technology for conversion of\r\nlignocellulosic biomass to ethanol\", Biomass. Bioenerg., vol.10,\r\npp.367 - 375, 1996.\r\n[17] W.E.Kaar, C.V.Gutierrez, and C.M.Kinoshita, \"Steam explosion of\r\nsugarcane bagasse as a pretreatment for conversion to ethanol\",\r\nBiomass. Bioenerg., vol.14, no.3, pp.277 - 287, 1998.\r\n[18] M.Taniguchi, M.Tanaka, R. Matsuno, and T. Kamikubo, \"Evaluation\r\nof chemical pretreatment for enzymatic solubilization of rice straw\",\r\nEuropean J. Appl. Microbiol. Biotechnol. 14: 35 - 39\r\n[19] G.L.Miller, \"Use of dinitrosalicylic acid reagent for determination of\r\ntotal reducing sugar\", Anal. Chem., vol.31, pp. 420 - 426, 1959.\r\n[20] M.Giovanni, \"Response surface methodology and product\r\noptimization\", J. Food Technol. vol. 37, pp. 41- 45, 1983.\r\n[21] M.F.Anjum, I.Tasadduq, and K. Al-Sultan, \"Response surface\r\nmethodology: A neural network approach\", European J. Operat. Res.,\r\nvol.101, pp.65-73, 1997.\r\n[22] K. Hornik, M. Stinchcombe, and H. White, \"Multilayer feed forward\r\nnetworks are universal approximators\", Neural Net., vol.2, pp.359 -\r\n366, 1989.\r\n[23] R. Dhanasekar, T. Viruthagiri, and P.L. Sabarathinam, \"Poly(3-\r\nhydroxy butyrate) synthesis from a mutant strain Azotobacter\r\nvinelandii utilizing glucose in a batch reactor\", Biochem. Eng. J., vol.\r\n16, no.1, pp.1 - 8, 2003.\r\n[24] E. Sasikumar, and T. Viruthagiri, \"Optimization of process conditions\r\nusing response surface methodology (RSM) for ethanol production\r\nfrom pretreated sugarcane bagasse: Kinetics and modeling\",\r\nBioenerg. Res. vol.1, pp. 239 - 247, 2008.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 37, 2010"}